1.粉末冶金件

2.铍青铜C17200和C17410的区别

3.生活中常见的银触点有哪些?

4.铝、铜、银的相关性质

5.酸洗钝化的原理

6.电子材料的相关图书

合金贵金属电刷_贵金属刷和碳刷

电阻的主要用途是阻碍电流的流过。

应用于限流、分流、降压、分压、负载与电容配合作滤波器及阻匹配等。数字电路中功能有上拉电阻和下拉电阻。

电阻器可分为:

(1)实芯碳质电阻器 用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。 特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。

(实芯碳质电阻器)

(2)绕线电阻器 用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。 绕线电阻具有较低的温度系数,阻值精度高, 稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。

(绕线电阻器)

薄膜电阻器:

用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:

(4) 碳膜电阻器 将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。

(碳膜电阻器)

(5) 金属膜电阻器 用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。 金属膜电阻比碳膜电阻的精度高,稳定性好,噪声, 温度系数小。在仪器仪表及通讯设备中大量用。

(金属膜电阻器)

(6)金属氧化膜电阻器 在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。

(金属氧化膜电阻器)

(7)合成膜电阻器 将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。 由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压, 高阻, 小型电阻器。

(合成膜碳电阻器)

(8)金属玻璃铀电阻器 将金属粉和玻璃铀粉混合,用丝网印刷法印在基板上。 耐潮湿, 高温, 温度系数小,主要应用于厚膜电路。

(金属玻璃铀电阻器)

(9)贴片电阻SMT 片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极用银钯合金浆料。体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。

(贴片电阻SMT)

敏感电阻:

敏感电阻是指器件特性对温度,电压,湿度,光照,气体, 磁场,压力等作用敏感的电阻器。 敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。

(11)压敏电阻 主要有碳化硅和氧化锌压敏电阻,氧化锌具有更多的优良特性。

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示。

作用:

压敏电阻主要应用于瞬态过电压保护,但是它的类似于半导体稳压管的伏安特性,还使它具有多种电路元件功能,例如可用作:

(1)直流高压小电流稳压元件,其稳定电压可高达数千伏以上,这是硅稳压管无法达到的。

(2)电压波动检测元件。

(3)直流电平移位元件。

(4)均压元件。

(5)荧光启动元件

(压敏电阻)

12)湿敏电阻

由感湿层,电极, 绝缘体组成,湿敏电阻主要包括氯化锂湿敏电阻,碳湿敏电阻,氧化物湿敏电阻。氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小,特性重复性不好,受温度影响大。碳湿敏电阻缺点为低温灵敏度低,阻值受温度影响大,由老化特性, 较少使用。 氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。有氧化锡,镍铁酸盐,等材料。

(湿敏电阻)

(13)光敏电阻

光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。

(光敏电阻)

(14)气敏电阻

利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。

(气敏电阻)

(15)力敏电阻

力敏电阻是一种阻值随压力变化而变化的电阻,国外称为压电电阻器。所谓压力电阻效应即半导体材料的电阻率随机械应力的变化而变化的效应。可制成各种力矩计,半导体话筒,压力传感器等。主要品种有硅力敏电阻器,硒碲合金力敏电阻器,相对而言, 合金电阻器具有更高灵敏度。

(力敏电阻)

热敏电阻:

热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。它可由单晶、多晶以及玻璃、塑料等半导体材料制成。这种电阻器具有一系列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化。

(热敏电阻)

热敏电阻的特点:对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各 种不同的外形结构。因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等

电位器(滑动变阻器):

电位器是具有三个引出端、阻值可按某种变化规律调节的电阻元件。电位器通常由电阻体和可移动的电刷组成。当电刷沿电阻体移动时,在输出端即获得与位移量成一定关系的电阻值或电压。电位器既可作三端元件使用也可作二端元件使用。后者可视作一可变电阻器。

(两种常用电位器) (电位器的符号)

电位器的作用——调节电压(含直流电压与信号电压)和电流的大小

电位器的结构特点——电位器的电阻体有两个固定端,通过手动调节转轴或滑柄,改变动触点在电阻体上的位置,则改变了动触点与任一个固定端之间的电阻值,从而改变了电压与电流的大小。

排阻:就是若干个参数完全相同的电阻,它们的一个引脚都连到一起,作为公共引脚,其余引脚正常引出。所以如果一个排阻是由n个电阻构成的,那么它就有n+1只引脚,一般来说,最左边的那个是公共引脚。它在排阻上一般用一个色点标出来。

(排阻原理图)

粉末冶金件

粉末冶金件按用途可分为以下类型:

(1)粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、金属陶瓷、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。

(2)粉末冶金工模具材料。包括硬质合金、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。

(3)粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。

(4)粉末冶金减摩材料。又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。

(5)粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。

(6)粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。

(7)粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。

磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、磁记录材料、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。

百万购车补贴

铍青铜C17200和C17410的区别

粉末冶金件,是指通过粉末冶金工艺制造的产品,包括多孔、半致密或全致密材料及制品。

粉末冶金件优势

粉末冶金材料具有传统熔铸工艺所无法获得的独特的化学组成和物理、力学性能,如材料的孔隙度可控,材料组织均匀、无宏观偏析(合金凝固后其截面上不同部位没有因液态合金宏观流动而造成的化学成分不均匀现象),可一次成型等。

粉末冶金件分类

粉末冶金件按用途可分为以下类型:

(1)粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、 金属陶瓷 、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。

(2)粉末冶金工模具材料。包括 硬质合金 、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。  

(3)粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。 

(4)粉末冶金减摩材料。又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。 

(5)粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。

(6)粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。  

(7)粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。

磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、 磁记录材料 、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。  粉末冶金件优势 粉末冶金件分类 @2019

生活中常见的银触点有哪些?

C17200铍青铜

C17200产品特性:

A、高强度:较高的硬度,非常优秀的弹性材料。

B、耐热:耐热性好,应力松驰现象小,可适用于温控器、继电器、插座等,以提高产品的可靠性。

C、高导电:导电率越高,散热好,代表发热越低,适用于零件的小型化,大电流设计之部件等,如大电流连接器、石油钻井头,矿井工具等。

D、耐疲劳性:性能越好,抗拉强度越高,产品寿命越长,但这与表面应力有很大关系

E、加工性:R/T值越小,成形性越好,与材料厚度、宽度、R角值有关。

F、抗腐蚀性

C17200用途:

可用于各类要求高强度、高弹性、高硬度、高耐磨性之微电机电刷、继电器、手机电池、弹簧、接插件、温度控制器之弹。

C17200主要规格:

C17200无缝管、C17200钢板、C17200圆钢、C17200圆环、C17200焊管、C17200钢带、C17200直条、C17200丝材、C17200圆饼、C17200扁钢、C17200六角棒、C17200加工件、C17200微丝。

篇幅有限,如需更多更详细介绍,欢迎咨询了解。

铝、铜、银的相关性质

触点指的是电子电器的断开和闭合时,进行相互分离和接触的交点。银触点具有耐热,耐电弧侵蚀及抗熔性,使用寿命长,导电电热性好、接触电阻低面稳定等优点。

生活中常见的银触点

触点指的是电子电器的断开和闭合时,进行相互分离和接触的交点。银触点具有耐热,耐电弧侵蚀及抗熔性,使用寿命长,导电电热性好、接触电阻低面稳定等优点。

银触点主要应用于接触器、开关、接插件、继电器、导电线路中的交点支点等。

手机马达上的换向器和电刷就含银。另外空调、汽车之类的继电器上都会含银触点。

正宗 abb断路器触点含银不低于80%,不包括基点材料重量哈,只是触点部分,当然一般销售商会宣称含银85%,仿得比较好的应该是50%含银。

电接触材料已有近百年的历史, 最初使用纯银、 纯金、纯铂制作触头材料。

20世纪 40 年代开始用 Ag、 Cu、 Au_Ag、 Pt_Ir、 Pd_Ag 等纯金属或合金;

20世纪 60年代以来发展了多元贵金属和各种贵金属复合材料。

银基电触头特点

01耐电磨损、02抗熔焊和导电性, 接触电阻小,稳定性好。

广泛用于各种轻重负荷的低压电器、 家用电器、 汽车电器、 航空航天电器中, 是电触头行业最为量大面广的产品。

银触点常用的焊接方式有哪些?

( 1) 电阻钎焊: 利用银触点与触桥片之间的接触电阻通过大电流发热, 使两者钎焊在一起, 焊接时要加入焊剂。

( 2) 火焰钎焊: 使用火焰加热, 将银触点和触桥片通过钎焊材料熔融焊接在一起。

( 3) 电阻点焊: 利用高频电流通过工件及焊接接触面间所产生的电阻热, 将焊件加热至局部熔化状态, 形成熔核, 然后断电, 并在压力下凝固结晶, 形成组织致密的焊点, 使银触点与触桥片焊接在一起。

银触点是电器的 “心脏” , 其焊接的质量对电器性能影响很大。

本答案由海菲焊接设备回答,希望对你有帮助。

酸洗钝化的原理

元素名称:铝

元素原子量:26.98

原子体积:(立方厘米/摩尔)

10.0

元素类型:金属

原子序数:13

元素符号:Al

元素中文名称:铝

元素在太阳中的含量:(ppm)

60

元素在海水中的含量:(ppm)

太平洋表面 0.00013

元素英文名称:Aluminum

相对原子质量:26.98

地壳中含量:(ppm)

82000

核内质子数:13

核外电子数:13

核电核数:13

氧化态:

Main Al+3

Other Al0, Al+1

质子质量:2.1749E-26

质子相对质量:13.091

所属周期:3

所属族数:IIIA

摩尔质量:27

氢化物:AlH3

氧化物:Al2O3

最高价氧化物化学式:Al2O3

密度:2.702

熔点:660.37

沸点:2467.0

燃点:550摄氏度

热导率: W/(m·K)

237

化学键能: (kJ /mol)

Al-H 285

Al-C 225

Al-O 585

Al-F 665

Al-Cl 498

Al-Al 200

声音在其中的传播速率:(m/S)

5000

电离能 (kJ/ mol)

M - M+ 577.4

M+ - M2+ 1816.6

M2+ - M3+ 2744.6

M3+ - M4+ 11575

M4+ - M5+ 14839

M5+ - M6+ 18376

M6+ - M7+ 23293

M7+ - M8+ 27457

M8+ - M9+ 31857

M9+ - M10+ 38459

莫氏硬度:2.75

电子排布:3s2 3p1

核外电子排布:2,8,3

晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。

晶胞参数:

a = 404.95 pm

b = 404.95 pm

c = 404.95 pm

α = 90°

β = 90°

γ = 90°

颜色和状态:银白色金属

原子半径:1.82

常见化合价:+3

发现人:厄斯泰德、韦勒

发现时间和地点:1825 丹麦

元素来源:地壳中含量最丰富的金属,在7%以上

元素用途:可作飞机、车辆、船、舶、火箭的结构材料。纯铝可做超高电压的电缆。做日用器皿的铝通常称“钢精”、“钢种“

工业制法:电解熔融的氧化铝和冰晶石的混合物

实验室制法:电解熔融的氯化铝

其他化合物:AlCl3-氯化铝 NaAlO2-偏铝酸钠 Al(OH)3-氢氧化铝

扩展介绍:带蓝色的银白色三价金属元素,延展性好,有韧性并能发出[响亮]声音,以其轻、良好的导电和导热性能、高反射性和耐氧化而著称。

发现人:韦勒 发现年代:1827年

发现过程:

1827年,德国的韦勒把钾和无水氯化铝共热,制得铝。

元素描述:

银白色有光泽金属,密度2.702克/厘米3,熔点660.37℃,沸点2467℃。化合价±3。具有良好的导热性、导电性,和延展性,电离能5.986电子伏特,虽是叫活泼的金属,但在空气中其表面会形成一层致密的氧化膜,使之不能与氧、水继续作用。在高温下能与氧反应,放出大量热,用此种高反应热,铝可以从其它氧化物中置换金属(铝热法)。例如:8Al+3Fe3O4=4Al2O3+9Fe+795千卡,在高温下铝也同非金属发生反应,亦可溶于酸或碱放出氢气。对水、硫化物,浓硫酸、任何浓度的醋酸,以及一切有机酸类均无作用。

元素来源:

铝以化合态的形式存在于各种岩石或矿石里,如长石、云母、高岭市、铝土矿、明矾时,等等。有铝的氧化物与冰晶石(Na3AlF6)共熔电解制得。

元素用途:

铝可以从其它氧化物中置换金属(铝热法)。其合金质轻而坚韧,是制造飞机、火箭、汽车的结构材料。纯铝大量用于电缆。广泛用来制作日用器皿。

元素资料:

铝在地壳中的分布量在全部化学元素中仅次于氧和硅,占第三位,在全部金属元素中占第一位。但由于铝的氧化力强,不易被还原,因而它被发现的较晚。

1800年意大利物理学家伏特创建电池后,1808~1810年间英国化学家戴维和瑞典化学家贝齐里乌斯都曾试图利用电流从铝钒土中分离出铝,但都没有成功。贝齐里乌斯却给这个未能取得的金属起了一个名字alumien。这是从拉丁文alumen来。该名词在中世纪的欧洲是对具有收敛性矾的总称,是指染棉织品时的媒染剂。铝后来的拉丁名称aluminium和元素符号Al正是由此而来。

1825年丹麦化学家奥斯德发表实验制取铝的经过。1827年,德国化学家武勒重复了奥斯德的实验,并不断改进制取铝的方法。1854年,德国化学家德维尔利用钠代替钾还原氯化铝,制得成锭的金属铝。

元素符号: Al 英文名: Aluminum 中文名: 铝

相对原子质量: 26.9815 常见化合价: +3 电负性: 1.61

电子排布: 3s2 3p1 核外电子排布: 2,8,3

同位素及放射线: Al-26[730000y] *Al-27 Al-28[2.3m]

电子亲合和能: 48 KJ·mol-1

第一电离能: 577.6 KJ·mol-1 第二电离能: 1817 KJ·mol-1 第三电离能: 2745 KJ·mol-1

单质密度: 2.702 g/cm3 单质熔点: 660.37 ℃ 单质沸点: 2467 ℃

原子半径: 1.82 埃 离子半径: 0.51(+3) 埃 共价半径: 1.18 埃

常见化合物: Al2O3 AlCl3 Al2S3 NaAlO2 Al2(SO4)3 Al(OH)3

铝,原子序数13,原子量26.981539。1825年丹麦科学家奥斯特用无水三氯化铝与钾汞齐作用,并蒸掉汞后得到铝;1854年德维尔用金属钠还原氯化钠和氯化铝的熔盐,制得金属铝,并在1855年的巴黎博览会上展示;1886年霍尔和埃鲁分别发明了电解氧化铝和冰晶石的熔盐制铝法,使铝成为可供实用的金属。铝在地壳中的含量为8%,仅次于氧和硅。它广泛分布于岩石、泥土和动、植物体内。

铝是银白色的轻金属,熔点660.37°C,沸点2467°C,密度2.702克/厘米?。铝为面心立方结构,有较好的导电性和导热性;纯铝较软。

铝是活泼金属,在干燥空气中铝的表面立即形成厚约50埃的致密氧化膜,使铝不会进一步氧化并能耐水;但铝的粉末与空气混合则极易燃烧;熔融的铝能与水猛烈反应;高温下能将许多金属氧化物还原为相应的金属;铝是的,即易溶于强碱,也能溶于稀酸。

铝的应用极为广泛。

铜元素

元素名称:铜

元素符号:Cu

元素原子量:63.55

元素类型:金属元素

元素在太阳中的含量:(ppm)

0.7

晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。

原子体积:(立方厘米/摩尔)

7.1

元素在海水中的含量:(ppm)

太平洋表面 0.00008

氧化态:

Main Cu+2

Other Cu-1, Cu0, Cu+1, Cu+3, Cu+4

晶胞参数:

a = 361.49 pm

b = 361.49 pm

c = 361.49 pm

α = 90°

β = 90°

γ = 90°

地壳中含量:(ppm)

50

质子数:29

中子数:35

原子序数:29

所属周期:3

所属族数:IB

电子层分布:2-8-18-1

莫氏硬度:3

声音在其中的传播速率:(m/S)

3810

一般状况下的密度:8.9*10^3kg/m3

发现人: 发现年代: 发现过程:

在古代就发现有铜存在。

元素描述

呈紫红色光泽的金属,密度8.92克/厘米3。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2(3价铜仅在少数不稳定的化合物中出现)。电离能7.726电子伏特。铜是人类发现最早的金属之一,也是最好的纯金属之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜[Cu2(OH)2CO3],这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀。

铜的发现简史

铜是古代就已经知道的金属之一。一般认为人类知道的第一种金属是金,其次就是铜。铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种金属,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用了,生产的发展促使人们找到了从铜矿中取得铜的方法。含铜的矿物比较多见,大多具有鲜艳而引人注目的颜色,例如:金**的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3Cu(OH)2,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿石在空气中焙烧后形成氧化铜CuO,再用碳还原,就得到金属铜。纯铜制成的器物太软,易弯曲。人们发现把锡掺到铜里去,可以制成铜锡合金——青铜。铜,COPPER,源自Cuprum,是以产铜闻名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外颜色的金属。铜与金的合金,可制成各种饰物和器具。加入锌则为黄铜;加进锡即成青铜。

元素来源

黄铜矿、辉铜矿、赤铜矿和孔雀石是自然界中重要的铜矿。把硫化物矿石煅烧后,再与少量二氧化硅和焦炭共熔得粗炼铜,再还原成泡铜,最后电解精制,即可得到铜。一个新的提取铜的方法正在研究中,就是把地下的低品位矿用原子能爆破粉碎,以稀硫酸原地浸取,再把浸取液抽到地表,在铁屑上将铜沉淀出来。

元素用途

铜是与人类关系非常密切的有色金属,被广泛地应用于电气、轻工、机械制造、建筑工业、国防工业等领域,在我国有色金属材料的消费中仅次于铝。

铜在电气、电子工业中应用最广、用量最大,占总消费量一半以上。用于各种电缆和导线,电机和变压器的绕阻,开关以及印刷线路板等。

在机械和运输车辆制造中,用于制造工业阀门和配件、仪表、滑动轴承、模具、热交换器和泵等。

在化学工业中广泛应用于制造真空器、蒸馏锅、酿造锅等。

在国防工业中用以制造、炮弹、枪炮零件等,每生产100万发,需用铜13--14吨。

在建筑工业中,用做各种管道、管道配件、装饰器件等。

以下是各行业铜消费占铜总消费量的比例: 行业 铜消费量占总消费量的比例

电子(包括通讯) 48%

建筑 24%

一般工程 12%

交通 7%

其他 9%

铜性能的应用

导电性:64%,耐蚀性:23%,结构强度:12%,装饰性:1%

元素资料

自然界中获得的最大的天然铜重420吨.在古代,人们便发现了天然铜,用石斧将其砍下来,用锤打的方法把它加工成物件。于是铜器挤进了石器的行列,并且逐渐取代了石器,结束了人类历史上的新石器时代。

在我国,距今4000年前的夏朝已经开始使用红铜,即天然铜。它的特点是锻锤出来的。1957年和1959年两次在甘肃武威皇娘娘台的遗址发掘出铜器近20件,经分析,铜器中铜含量高达99.63%~99.87%,属于纯铜。

当然,天然铜的产量毕竟是稀少的。生产的发展促进人们找到从铜矿中取得铜的方法。铜在地壳中总含量并不大,不超过0.01%,但是含铜的矿物是比较多见的,它们大多具有各种鲜艳而引人注目的颜色,招至人们的注意。例如鲜绿色的孔雀石CuCO3.Cu(OH)2,深蓝色的石青2CuCO3.Cu(OH)2等。这些矿石在空气中燃烧后得到铜的氧化物,再用碳还原,就得到金属铜。

1933年,河南省安阳县殷虚发掘中,发现重达18.8千克的孔雀石,直径在1寸以上的木炭块、陶制炼铜用的将军盔以及重21.8千克的煤渣,说明3000多年前我国古代劳动人民从铜矿取得铜的过程。

但是,炼铜制成的物件太软,容易弯曲,并且很快就钝。接着人们发现把锡掺到铜里去制成铜锡合金——青铜。青铜器件的熔炼和制作比纯铜容易的多,比纯铜坚硬(如把锡的硬度值定为5,那么铜的硬度就是30,而青铜的硬度则是100~150),历史上称这个时期为青铜时代。

我国战国时代的著作《周礼·考工记》总结了熔炼青铜的经验,讲述青铜铸造各种不同物件用铜和锡的不同比例:“金有六齐(方剂)。六分其金(铜)而锡居一,谓之钟鼎之齐;五分其金而锡居一,谓之斧斤之齐;四分其金而锡居一,谓之戈戟之齐;三分其金而锡居一,谓之大刃之齐;五分其金而锡居二,谓之削杀矢(箭)之齐;金锡半,谓之鉴(镜子)燧(利用镜子聚光取火)之齐。”这表明在3000多年前,我国劳动人民已经认识到,用途不同的青铜器所要求的性能不同,用以铸造青铜器的金属成分比例也应有所不同。

青铜由于坚硬,易熔,能很好的铸造成型,在空气中稳定,因而即使在青铜时代以后的铁器时代里,也没有丧失它的使用价值。例如在公元前约280年,欧洲爱琴海中罗得岛上罗得港口矗立的青铜太阳神,高达46米,手指高度超过成人。

我国古代劳动人民更最早利用天然铜的化合物进行湿法炼铜,这是湿法技术的起源,是世界化学史上的一项发明。西汉《淮南子·万毕术》记载:曾青得铁则化为铜。曾青为硫酸铜。这种方法用现代化学式表示就是:

CuSO4+Fe=FeSO4+Cu

西方传说,古代地中海的CYPRUS岛是出产铜的地方,因而由此得到它的拉丁名称CUPRUM和它的元素符号Cu。英文中的COPPER,拉丁文中的CUIVRE、都源于此。

铜具有独特的导电性能,是铝所不能代替的,在今天电子工业和家用电器发展的时代里,这个古老的金属有恢复了它的青春。铜导线正在被广泛的应用。从国外的产品来看,一辆普通家用轿车的电子和电动附件所须铜线长达1公里,法国高速火车铁轨每公里用10吨铜,波音747-200型飞机总重量中铜占2%。

元素名称:银

元素符号:Ag

元素英文名称:Silver

拉丁原名:Argentum

中文是将金属金字部首,加上艮字形声。

元素类型:金属元素

原子体积:(立方厘米/摩尔) 10.3

颜色和状态:银白色金属

莫氏硬度:2.5

声音在其中的传播速率:(m/S)2680

含量

元素在太阳中的含量:(ppm)

0.001

元素在海水中的含量:(ppm)

太平洋表面 0.0000001

地壳中含量:(ppm)

0.07

相对原子质量:107.9

原子序数:47

质子数:47

摩尔质量:108

所属周期:5

所属族数:IB

电子层排布:2-8-18-18-1

常见化合价:+1

单质:银

单质化学符号:Ag

氧化态:

Main Ag+1

Other Ag0, Ag+2, Ag+3

电离能 (kJ /mol)

M - M+ 731

M+ - M2+ 2073

M2+ - M3+ 3361

M3+ - M4+ 5000

M4+ - M5+ 6700

M5+ - M6+ 8600

M6+ - M7+ 11200

M7+ - M8+ 13400

M8+ - M9+ 15600

M9+ - M10+ 18000

物理性质

密度:11.7克/厘米3

熔点:961.93℃

沸点:2213℃

其他性质:富延展性,是导热、导电性能很好的金属。第一电离能7.576电子伏。化学性质稳定,对水与大气中的氧都不起作用;易溶于稀硝酸、热的浓硫酸和盐酸、熔融的氢氧化碱。

晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。

晶胞参数:

a = 408.53 pm

b = 408.53 pm

c = 408.53 pm

α = 90°

β = 90°

γ = 90°

化学性质:

银是古代发现的金属之一。银在自然界中虽然也有单质存在,但绝大部分是以化合态的形式存在。

银具有很高的延展性,因此可以碾压成只有0.00003厘米厚的透明箔,1克重的银粒就可以拉成约两公里长的细丝。

银的导热性和导电性在金属中名列前茅。

银的特征氧化数为+1,其化学性质比铜差,常温下,甚至加热时也不与水和空气中的氧作用,但久置空气中能变黑,失去银白色的光泽,这是因为银和空气中的H2S化合成黑色Ag2S的缘故。其化学反应方程式为:

4Ag + H2S + O2 = 2Ag2S + 2H2O

银不能与稀盐酸或稀硫酸反应放出氢气,但银能溶解在硝酸或热的浓硫酸中:

加热

2Ag + 2H2SO4(浓) ==== Ag2SO4 + SO2↑ + 2H2O

银在常温下与卤素反应很慢,在加热的条件下即可生成卤化物:

473K

2Ag + F2 ===== 2AgF 暗棕色

加热

2Ag + Cl2 ===== 2AgCl↓ 白色

加热

2Ag + Br2 ===== 2AgBr↓ **

加热

2Ag + I2 ===== 2AgI↓ 橙色

银对硫有很强的亲合势,加热时可以与硫直接化合成Ag2S:

加热

2Ag + S ==== Ag2S

电子材料的相关图书

浅谈金属钝化的机理

我们知道,铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。

作者:李言荣 林媛 陶伯万

出版社:清华大学出版社   图书详细信息:  ISBN:87302306856  定价:48元  印次:1-1  装帧:平装  印刷日期:2013-1-23 图书简介:  内 容 简 介  本书较为全面地介绍了电子信息技术和产业中涉及的电子材料的制备方法、结构特征,电、磁、光等方面的性质,电子元件设计、开发应用所需的材料基础知识。对电子材料的基本理论进行了叙述,介绍了电子材料的性能、应用和发展趋势。本书共13章,包括电子材料概述、材料的分析与表征、薄膜、厚膜,以及陶瓷等基本工艺、超导、导电、半导体、电阻材料、介质材料、磁性材料、光电材料、敏感材料与封装材料等内容。  本书可作为微电子与固体电子、材料科学与工程、半导体、光电子等专业的基础课教材,也可供冶金、物理、化学、化工等相关学科的大学生、研究生、教师及工程技术人员参考使用。本书封面贴有清华大学出版社防伪标签,无标签者不得销售。

第1章 电子材料概论1  1.1 电子材料的分类与特点1  1.1.1 电子材料在国民经济中的地位1  1.1.2 电子材料的分类1  1.1.3 电子材料的环境要求2  1.1.4 电子材料与元器件4  1.2 无机电子材料5  1.2.1 晶体的特征5  1.2.2 同构晶体和多晶型转变9  1.2.3 固溶体11  1.2.4 金属间化合物13  1.3 实际晶体、非晶体和准晶14  1.3.1 实际晶体14  1.3.2 非晶态材料16  1.3.3 准晶体简介18  1.4 电子材料的表面与界面20  1.4.1 表面的定义和种类20  1.4.2 清洁表面的原子排布21  1.4.3 实际表面的特征23  1.4.4 晶粒间界26  1.4.5 相界和分界面28  1.5 电子材料的应用与发展29  1.5.1 现代社会对电子材料的要求29  1.5.2 电子材料的选用原则30  1.5.3 纳米材料31  1.5.4 复合材料与梯度功能材料31  1.5.5 超常材料34  1.5.6 电子材料的发展动态35  复习思考题36  参考文献36电 子 材 料目 录第2章 电子材料的分析和表征38  2.1 电子材料化学成分分析方法38  2.2 电子材料结构分析方法--X射线衍射分析法39  2.3 电子材料的显微分析法41  2.4 电子材料表面界面分析技术44  2.5 扫描探针技术46  2.6 光谱分析技术49  2.7 热分析技术54  复习思考题57  参考文献57第3章 薄膜工艺59  3.1 真空技术概述60  3.1.1 真空60  3.1.2 真空的获得60  3.1.3 真空的测量64  3.2 真空蒸发镀膜工艺64  3.2.1 真空蒸发原理64  3.2.2 热蒸发65  3.2.3 脉冲激光蒸发66  3.2.4 分子束外延67  3.2.5 其他蒸发镀膜方法简介67  3.3 溅射镀膜工艺68  3.3.1 直流二极溅射及其原理68  3.3.2 射频溅射69  3.3.3 磁控溅射70  3.3.4 反应溅射71  3.3.5 离子束沉积72  3.3.6 溅射沉积技术的特点72  3.4 化学气相沉积工艺73  3.4.1 化学气相沉积过程73  3.4.2 热CVD74  3.4.3 等离子体CVD75  3.4.4 光CVD75  3.4.5 有机金属CVD(MOCVD)76  3.4.6 表面氧化工艺77  复习思考题77  参考文献78第4章 厚膜工艺79  4.1 厚膜浆料79  4.1.1 厚膜浆料的特性和制备79  4.1.2 导体浆料81  4.1.3 电阻浆料83  4.1.4 介质浆料84  4.1.5 电感及铁氧体磁性浆料85  4.2 厚膜图案形成技术85  4.2.1 丝网印刷86  4.2.2 其他图案形成技术88  4.3 厚膜的干燥和烧成90  4.3.1 干燥90  4.3.2 烧成90  复习思考题92  参考文献92第5章 陶瓷工艺93  5.1 概述93  5.2 粉体的表征94  5.3 粉体的混合与粉碎96  5.4 粉体的化学制备99  5.5 成型技术102  5.5.1 粘合剂102  5.5.2 造粒103  5.5.3 成型方法及工艺103  5.6 烧结原理和种类108  5.6.1 烧结过程108  5.6.2 烧结中的有关现象109  5.6.3 烧结过程控制109  5.6.4 烧结种类111  复习思考题114  参考文献114第6章 导电材料和电阻材料115  6.1 导电材料的性质与分类115  6.2 金属导电材料116  6.2.1 金属导电材料的标准116  6.2.2 铜117  6.2.3 铜合金117  6.2.4 铝119  6.3 电极及电刷材料120  6.3.1 电容器电极材料120  6.3.2 引出线122  6.3.3 电刷与弹性材料122  6.4 厚膜导电材料123  6.4.1 厚膜导电材料的要求124  6.4.2 贵金属厚膜导电材料125  6.4.3 贱金属厚膜导电材料127  6.4.4 导电胶128  6.5 薄膜导电材料130  6.5.1 铝薄膜131  6.5.2 铬-金薄膜和镍铬-金薄膜131  6.5.3 钛-金薄膜132  6.5.4 多层导电薄膜132  6.5.5 透明导电薄膜134  6.6 电阻材料概述137  6.6.1 电阻材料的主要性能137  6.6.2 电阻材料的分类139  6.7 线绕电阻材料140  6.7.1 贱金属电阻合金线140  6.7.2 贵金属电阻合金线142  6.8 厚膜电阻材料143  6.9 薄膜电阻材料145  6.10 精密金属膜电阻材料149  6.10.1 镍铬合金系电阻薄膜149  6.10.2 铬-硅电阻薄膜150  6.10.3 钽基电阻薄膜152  6.10.4 金属-陶瓷电阻薄膜154  复习思考题155  参考文献156第7章 超导材料157  7.1 超导的发现历程157  7.2 超导材料的基本性质和应用160  7.2.1 超导材料的主要特性160  7.2.2 临界磁场与临界电流162  7.2.3 超导材料的应用165  7.3 低温超导材料166  7.4 高温超导材料169  7.5 新型超导材料173  复习思考题176  参考文献176第8章 半导体材料177  8.1 半导体材料的一般性能177  8.1.1 半导体材料的分类177  8.1.2 半导体中的电子状态178  8.1.3 半导体的电学性质182  8.1.4 半导体的光电性质186  8.1.5 半导体的磁学性质189  8.1.6 半导体的热电性质190  8.2 三代半导体材料概述191  8.3 锗、硅材料193  8.3.1 锗、硅的物理和化学性质193  8.3.2 锗、硅的晶体结构与能带结构194  8.3.3 锗、硅中的杂质和缺陷195  8.3.4 非晶硅材料196  8.3.5 锗硅合金196  8.4 III-V族化合物半导体1  8.4.1 III-V族化合物半导体的一般性质1  8.4.2 III-V族化合物半导体的晶体结构199  8.4.3 砷化镓200  8.4.4 GaN材料系列200  8.5 II-VI族化合物202  8.6 碳化硅203  8.7 其他半导体材料204  复习思考题210  参考文献210第9章 电介质材料211  9.1 电介质材料的一般性质211  9.1.1 极化与介电常数211  9.1.2 绝缘电阻与漏电流214  9.1.3 介质损耗与复介电常数215  9.1.4 电介质的击穿216  9.2 压电、热释电和铁电介质材料217  9.2.1 材料的压电性、热释电性与铁电性217  9.2.2 压电参数与压电材料221  9.2.3 热释电介质材料及应用225  9.2.4 铁电陶瓷介质材料及应用226  9.3 装置陶瓷229  9.3.1 氧化铝陶瓷229  9.3.2 高热导率陶瓷230  9.3.3 低温共烧陶瓷基板233  9.4 电容器介质材料236  9.4.1 电容器介质材料的分类236  9.4.2 高介电容器瓷237  9.4.3 半导体陶瓷介质及其电容器240  9.4.4 多层陶瓷电容器介质材料241  9.5 微波介质材料244  9.5.1 微波陶瓷的应用与要求244  9.5.2 微波陶瓷的分类245  9.5.3 低温共烧微波陶瓷247  9.6 玻璃电介质材料247  9.6.1 玻璃的结构与组成248  9.6.2 玻璃电介质251  9.6.3 微晶玻璃252  9.7 透明陶瓷和远红外陶瓷材料254  9.7.1 透明陶瓷材料254  9.7.2 远红外陶瓷材料257  复习思考题258  参考文献259  第10章 磁性材料260  10.1 概述260  10.1.1 物质的磁性260  10.1.2 磁性材料的技术磁性参量263  10.1.3 磁性材料的分类和特点263  10.1.4 磁性材料的磁化264  10.2 软磁材料265  10.2.1 软磁材料的特性265  10.2.2 铁氧体软磁材料267  10.2.3 金属软磁材料269  10.2.4 非晶及纳米晶软磁材料271 10.3 永磁材料273  10.3.1 永磁材料的特性273  10.3.2 金属永磁材料275  10.3.3 铁氧体永磁材料276  10.3.4 稀土永磁材料278  10.3.5 永磁薄膜281  10.4 旋磁材料与磁记录材料281  10.4.1 旋磁性和旋磁材料281  10.4.2 石榴石型旋磁材料282  10.4.3 其他旋磁材料284  10.5 磁记录材料286  10.5.1 磁记录原理286  10.5.2 磁记录的特点286  10.5.3 磁头及磁头材料287  10.5.4 磁记录介质及材料288  10.6 其他磁功能材料290  10.6.1 磁制冷材料290  10.6.2 磁光材料291  10.6.3 超磁致伸缩材料293  10.6.4 磁电阻材料295  10.6.5 磁性液体296  复习思考题298  参考文献298第11章 光电材料与热电材料300  11.1 发光材料300  11.1.1 材料的发光机理300  11.1.2 电致发光材料301  11.1.3 光致发光材料303  11.2 激光材料309  11.2.1 激光的特点及发光原理309  11.2.2 激光晶体310  11.2.3 激光玻璃311  11.2.4 透明激光陶瓷313  11.3 光电转换材料314  11.3.1 太阳能电池概述314  11.3.2 单晶和多晶光电池材料315  11.3.3 薄膜光电池材料315 11.4 光电探测材料318  11.4.1 光电探测器概述318  11.4.2 红外探测器的类型318  11.4.3 光电型探测器材料321  11.4.4 热释电探测器材料321  11.4.5 紫外探测材料322  11.5 光电显示材料324  11.5.1 阴极射线管用显示材料324  11.5.2 液晶显示325  11.5.3 场致发光材料325  11.5.4 微胶囊电泳显示及材料326  11.6 非线性光学材料、电光材料和闪烁材料327  11.6.1 非线性光学材料327  11.6.2 电光材料331  11.6.3 闪烁体材料333  11.7 热电材料336  11.7.1 热电效应和热电优值336  11.7.2 主要的热电材料337  11.7.3 提高热电材料性能的主要方法339  复习思考题340  参考文献341第12章 敏感材料与吸波材料342  12.1 敏感材料的分类342  12.2 力敏材料345  12.3 热(温)敏材料349  12.3.1 热电偶材料349  12.3.2 氧化物半导体热敏电阻材料351  12.4 磁敏材料360  12.5 气敏材料363  12.6 湿敏材料370  12.7 离子敏材料376  12.8 电压敏感材料377  12.9 吸波材料概述380  12.10 重要的吸波材料383  12.10.1 磁性吸波材料383  12.10.2 导电型吸波材料385  12.10.3 电介质型吸波材料386  12.10.4 其他吸波材料388  复习思考题389  参考文献390第13章 电子封装材料391  13.1 封装技术简介391  13.2 框架材料与互连材料394  13.2.1 框架材料394  13.2.2 引线材料398  13.2.3 焊锡材料399  13.2.4 导电胶402  13.3 密封材料403  13.4 基板材料407  13.4.1 金属基板407  13.4.2 陶瓷基板410  13.4.3 有机基板414  13.5 散热材料417  13.5.1 热沉材料417  13.5.2 热界面材料420  复习思考题422  参考文献423 基本信息

作者:陈鸣

出版社:北京邮电大学出版社

出版年:2006-5

页数:322

定价:36.00元

装帧:简装本

ISBN:87563512478

内容简介

全书共由下述8章组成:绪论;电介质理论基础;无机介电材料;压电与铁电材料;半导体材料;导电材料;磁性材料;其他电子材料。主要介绍电子元件常用材料的基础理论知识、基本性能特点与参数、基本组成和制作原理以及应用概况。

本教材为高等职业教育电子元件与材料专业或微电子技术专业教学用书,也可供从事电子元件与材料生产、科研方面的专业技术人员参考。